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In our paper we derived an effective nonlocal equation for transport under random retardation properties based on a
resummation of the perturbation series for the self-energy. Recently Dr. Victor P. Shkilev pointed out to us �1� that the
expression for the self-energy obtained there was inconsistent. Here we provide consistent expressions for the self-energy and
the resulting effective transport equations. The basic conclusions of our paper, namely, �i� on average, transport is described by
a nonlocal equation whose kernel is uniquely determined by the disorder distribution, and �ii� the average description is
equivalent to transport under linear kinetic adsorption and continuous time random walks, remain unchanged.

The total concentration c�x , t� and the mobile concentration cm�x , t� for transport in a medium with random retardation
properties are related by c�x , t�=��x�cm�x , t�, where the retardation coefficient ��x�=1+kd�x��1 with kd�x� the distribution
coefficient. It is modeled as a stationary random field.

Shkilev �1� remarked that the cumulative average total and mobile concentrations are related by

�
0

�

dtc̄�x,t� = �̄�
0

�

dtc̄m�x,t� . �1�

Furthermore, for narrow distributions of the retardation factor, the average total concentration can be approximated by

c̄�x , t�= �1+ k̄d�cm�x , t�.
Our paper derives a nonlocal equation for the ensemble average mobile concentration cm�x , t� that is shown to be equivalent

to transport under linear kinetic adsorption and continuous time random walks. The memory kernels that characterize these
average transport models are uniquely defined in terms of the heterogeneity distribution. The expressions for the memory
kernels and thus for the average behavior are expressed in terms of the self-energy ��k ,s�. The latter is defined implicitly by

c̃
m
*�k,s� =

1

�̄s − ikq − �̄��k,s�
, �2�

where c̃
m
*�k ,s� denotes the Fourier-Laplace transform of cm�x , t�. Furthermore, according to relation �28� in our paper the total

concentration is given by

c̃*�k,s� = �̄�1 − s−1��k,s��c̃
m
*�k,s� . �3�

The self-energy ��k ,s� is obtained in our paper based on a partial summation of the perturbation series for ��k ,s� and it is
found that ��k ,s�=��s� is independent of k. Thus, Eq. �2� implies directly a temporal nonlocal average transport equation for
cm�x , t�. However, as noticed by Shkilev �1�, the average expressions obtained are not consistent with relation �1�.

Here we provide an alternative derivation that yields an exact expression for ��k ,s� and leads to explicit expressions for the
average concentrations that are consistent with Eq. �1�. Furthermore, the expression obtained below for ��k ,s� confirms that
��k ,s�=��s� is independent of k. This implies that average transport is temporally nonlocal and uniquely defined in terms of
the disorder distribution. Specifically, the nonlocal form of the governing equation for the average mobile concentration
cm�x , t�,

�cm�x,t�
�t

+
�

�t
�

0

t

dt���t − t��c�x,t�� + �q
�

�x
− D

�2

�x2�cm�x,t� = 0, �4�

is unchanged, compare Eq. �58� in our paper. The specific form of the memory function ��t�, however, is different. The correct
memory function is derived below and given in terms of its Laplace transform by Eq. �14�. Furthermore, we demonstrate that
the average transport model �4� is equivalent to linear kinetic adsorption and continuous time random walks also for the new
memory function �14�. As such, the main conclusions of our paper remain unchanged.

The starting point of our derivation is the transport equation for the mobile concentration,
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��x�
�cm�x,t�

�t
+ q

�cm�x,t�
�x

= 0, �5�

where q is the constant flow velocity. Local dispersion is disregarded. The initial condition for cm�x , t� is ��x�cm�x , t=0�
=��x�. As boundary conditions we specify zero concentration at plus and minus infinity. Laplace transform �e.g., �2�� of Eq. �5�
then gives

s��x�c
m
*�x,s� + q

�c
m
*�x,s�

�x
= ��x� . �6�

The latter can be solved by separation of variables,

c
m
*�x,s� = q−1 exp�− sq−1�

0

x

dx���x���H�x� , �7�

where H�x� is the Heaviside step function. Using this expression one can already deduce Eq. �1�. The Fourier transform of
c

m
*�x ,s� is defined by

c̃*�k,s� = �
0

� dx

q
exp�ikx�exp�− sq−1�

0

x

dx���x��� . �8�

We now coarse grain the resolution scale by defining x=nl, where l is large enough so that ��x� and ��x+ l� can be
considered uncorrelated, that is, it is of the order of the correlation scale of ��x�. We then obtain for c̃

m
*�k ,s�

c̃
m
*�k,s� = �q�

n=0

�

exp�iknl�exp	− s�q�
j=0

n

� j
 , �9�

where we defined the advection time scale �q= l /q.
The single point probability density function of ��x� is given by ���−��x��=P���. Thus, taking the ensemble average in Eq.

�9�, gives for c̃
m
*�k ,s�

c̃
m
*�k,s� = �q�

n=0

�

exp�iknl�P*�s�q�n+1. �10�

The right side can be summed up to

c̃
m
*�k,s� =

�qP*�s�q�
1 − P*�s�q�exp�ikl�

. �11�

By comparison of Eq. �2� with Eq. �11�, we find for the self-energy ��k ,s����s�

��s� =
�1 + s�q�̄�P*�s�q� − 1

�q�̄P*�s�q�
, �12�

where we disregard terms of order l. This expression is different from the one obtained in our paper by �partial� resummation
of the perturbation series. Comparison of Eq. �12� with expression �53� in our paper reveals the terms that are disregarded in
the partial resummation of the perturbation series.

(a) Effective equation: From expression �11�, we obtain for c
m
*�x ,s�

sc
m
*�x,s��1 + �*�s�� =

c
m
*�x − l,s� − c

m
*�x,s�

�q
+ ��x� , �13�

where we defined the memory function

�*�s� =
1 − �1 + s�q�P*�s�q�

s�qP*�s�q�
. �14�

The average total concentration �3� now is given by

c*�x,s� = �1 + �*�s��c
m
*�x,s� . �15�

Note that the memory function 	*�s� defined by Eq. �56� in our paper reads in terms of �*�s� as 	*�s�= �1+�*�s�� / �̄−1.
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By Taylor expansion of c
m
*�x− l ,s� in Eq. �13� up to second order, we obtain the effective equation

sc
m
*�x,s��1 + �*�s�� + �q

�

�x
− D

�2

�x2�c
m
*�x,s� = ��x� , �16�

where we defined D= lq /2. Its inverse Laplace transform is given by Eq. �4�.
(b) Equivalence to linear kinetic adsorption models: Equation �16� describes transport under linear kinetic sorption char-

acterized by the distribution of sorption time scale Pad���. In this context, the memory function can be written as

�*�s� = k̄d�
0

�

d�
Pad���
1 + s�

, �17�

where k̄d= �̄−1. The distribution of adsorption time scales Pad��� is characterized by its moments m�
�n�, which are given in

terms of the moments m�
�k� of ��x� by the recursion relation �for n�0�

m�
�n� =

m�
�n+1��q

n

k̄d�n + 1�!
−

m�
�n��q

n

k̄dn!
− �

j=1

n
m�

�j��q
j

j!
m�

�n−j�. �18�

The average total concentration �15� in this picture is given by

c̄�x,t� = cm�x,t� + k̄d�
0

t

dt��
0

�

d�Pad���exp�−
t − t�

�
�cm�x,t�� . �19�

If the distribution of adsorption times Pad��� is narrow, that is, if it decays rapidly for �
�c, with �c a characteristic time scale,
then the latter expression can be approximated for t
�c by

c̄�x,t� = �1 + k̄d�cm�x,t� . �20�

As outlined above, this relation was indicated as a consistence test for the upscaled result.
(c) Equivalence to continuous time random walks: The effective equation �21� reads in terms of the total concentration �15�

as

sc*�x,s� + �q
�

�x
− D

�2

�x2� s�qP*�s�q�
1 − P*�s�q�

c*�x,s� = ��x� . �21�

Comparison to the transport equation for the particle density of a continuous time random walk, see, e.g., Eq. �91� in our paper
establishes immediately a relation between the distribution of retardation coefficients and the distribution of transition times
��t�, see also �3�,

��t� = �q
−1P�t/�q� . �22�

In Ref. �3�, these results are generalized for multiple dimensions and finite local scale dispersion using a Lagrangian
upscaling approach.

We are grateful to Dr. Victor P. Shkilev from the Chuiko Institute of Surface Chemistry, National Academy of Sciences of
Ukraine, for pointing out the inconsistency in the expression for the self-energy.
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